Chapter 6

Chemical Proportions in Compounds

Solutions for Practice Problems
Student Textbook page 201

1. Problem
A sample of a compound is analyzed and found to contain 0.90 g of calcium and 1.60 g of chlorine. The sample has a mass of 2.50 g. Find the percentage composition of the compound.

What Is Required?
You need to find the mass percents of calcium and chlorine in the compound.

What Is Given?
You know the mass of the compound, as well as the mass of each element in the compound.
Mass of compound = 2.50 g
Mass of Ca = 0.90 g
Mass of Cl = 1.60 g

Plan Your Strategy
To find the percentage composition of the compound, find the mass percent of each element. To do this, divide the mass of each element by the mass of the compound and multiply by 100%.

Act on Your Strategy
Mass percent of Ca = \(\frac{\text{Mass of Ca}}{\text{Mass of compound}} \times 100\% \)
\[
= \frac{0.90 \text{ g}}{2.50 \text{ g}} \times 100\%
= 36\%
\]
Mass percent of Cl = \(\frac{\text{Mass of Cl}}{\text{Mass of compound}} \times 100\% \)
\[
= \frac{1.60 \text{ g}}{2.50 \text{ g}} \times 100\%
= 64\%
\]
The percentage composition of the compound is 36% calcium and 64% chlorine.

Check Your Solution
The mass of calcium is 0.9 g per 2.50 g of the compound. This is roughly a little over one third of the mass of the compound, which is close to the calculated value of 36%.

2. Problem
Find the percentage composition of a pure substance that contains 7.22 g nickel, 2.53 g phosphorus, and 5.25 g oxygen only.
What Is Required?
You need to find the mass percents of nickel, phosphorus, and oxygen in the pure substance.

What Is Given?
You know the mass of each element in the compound.
Mass of Ni = 7.22 g
Mass of P = 2.53 g
Mass of O = 5.25 g

Plan Your Strategy
First calculate the mass of the pure substance. According to the Law of Conservation of Mass, the mass of any compound is the sum of the masses of its component elements. Then, to find the percentage composition of the compound, find the mass percent of each element. To do this, divide the mass of each element by the mass of the compound and multiply by 100%.

Act on Your Strategy
Mass of the pure substance = Mass of Ni + Mass of P + Mass of O
= 7.22 g + 2.53 g + 5.25 g
= 15.0 g

Mass percent of Ni = \(\frac{\text{Mass of Ni}}{\text{Mass of substance}} \times 100\% \)
= \(\frac{7.22 \text{ g}}{15.0 \text{ g}} \times 100\% \)
= 48.1%

Mass percent of P = \(\frac{\text{Mass of P}}{\text{Mass of substance}} \times 100\% \)
= \(\frac{2.53 \text{ g}}{15.0 \text{ g}} \times 100\% \)
= 16.9%

Mass percent of O = \(\frac{\text{Mass of O}}{\text{Mass of substance}} \times 100\% \)
= \(\frac{5.25 \text{ g}}{15.0 \text{ g}} \times 100\% \)
= 35.0%

The percentage composition of the pure substance is 48.1% nickel, 16.9% phosphorus, and 35.0% oxygen.

Check Your Solution
The mass of nickel is 7.22 g per 15.0 g of the compound. This is roughly 50%, which is close to the calculated value of 48.1%.

3. Problem
A sample of a compound is analyzed and found to contain carbon, hydrogen, and oxygen. The mass of the sample is 650 mg, and the sample contains 257 mg of carbon and 50.4 mg of hydrogen. What is the percentage composition of the compound?

What Is Required?
You need to find the mass percents of carbon, hydrogen, and oxygen in the compound.

What Is Given?
You know the mass of the compound, as well as the mass of carbon and hydrogen in the compound.
Mass of compound = 650 mg
Mass of C = 257 mg
Mass of $\text{H} = 50.4 \, \text{mg}$

Plan Your Strategy
First calculate the mass of oxygen in the compound. According to the Law of Conservation of Mass, the mass of any compound is the sum of the masses of its component elements. To find the percentage composition of the compound, find the mass percent of each element. To do this, divide the mass of each element by the mass of the compound and multiply by 100%.

Act on Your Strategy
Mass of $\text{O} = \text{Mass of compound} - (\text{Mass of } \text{C} + \text{Mass of } \text{H})$

$= 650 \, \text{mg} - (257 \, \text{mg} + 50.4 \, \text{mg})$

$= 342.6 \, \text{mg}$

Mass percent of $\text{C} = \frac{\text{Mass of C}}{\text{Mass of compound}} \times 100\%$

$= \frac{257 \, \text{mg}}{650 \, \text{mg}} \times 100\%$

$= 39.5\%$

Mass percent of $\text{H} = \frac{\text{Mass of H}}{\text{Mass of compound}} \times 100\%$

$= \frac{50.4 \, \text{mg}}{650 \, \text{mg}} \times 100\%$

$= 7.8\%$

Mass percent of $\text{O} = \frac{\text{Mass of O}}{\text{Mass of compound}} \times 100\%$

$= \frac{342.6 \, \text{mg}}{650 \, \text{mg}} \times 100\%$

$= 52.7\%$

The percentage composition of the compound is 39.5% carbon, 7.8% hydrogen, and 52.7% oxygen.

Check Your Solution
The mass of oxygen is 342.6 mg per 650 mg of the compound. This is roughly 50%, which is close to the calculated value of 52.7%.

4. Problem

A scientist analyzes a 50.0 g sample and finds that it contains 13.3 g of potassium, 17.7 g of chromium, and another element. Later the scientist learns that the sample is potassium dichromate, $\text{K}_2\text{Cr}_2\text{O}_7$. Potassium dichromate is a bright orange compound that is used in the production of safety matches. What is the percentage composition of potassium dichromate?

What Is Required?
You need to find the mass percents of potassium, chromium, and oxygen in the potassium dichromate.

What Is Given?
You know the mass of potassium dichromate, as well as the mass of the potassium and chromium in the compound.

- Mass of $\text{K}_2\text{Cr}_2\text{O}_7 = 50.0 \, \text{g}$
- Mass of K = 13.3 g
- Mass of Cr = 17.7 g

Plan Your Strategy
First calculate the mass of oxygen in the compound. According to the Law of Conservation of Mass, the mass of any compound is the sum of the masses of its component elements. To find the percentage composition of the compound, find the
mass percent of each element. To do this, divide the mass of each element by the mass of the compound and multiply by 100%.

Act on Your Strategy

Mass of O = Mass of K₂Cr₂O₇ – (Mass of K + Mass of Cr)

\[= 50.0 \text{ g} - (13.3 \text{ g} + 17.7 \text{ g}) \]

\[= 19.0 \text{ g} \]

Mass percent of K = \[
\frac{\text{Mass of K}}{\text{Mass of compound}} \times 100\%
\]

\[= \frac{13.3 \text{ g}}{50.0 \text{ g}} \times 100\% \]

= 26.6%

Mass percent of Cr = \[
\frac{\text{Mass of Cr}}{\text{Mass of compound}} \times 100\%
\]

\[= \frac{17.7 \text{ g}}{50.0 \text{ g}} \times 100\% \]

= 35.4%

Mass percent of O = \[
\frac{\text{Mass of O}}{\text{Mass of compound}} \times 100\%
\]

\[= \frac{19.0 \text{ g}}{50.0 \text{ g}} \times 100\% \]

= 38.0%

The percentage composition of the compound is 26.6% potassium, 35.4% chromium, and 38.0% oxygen.

Check Your Solution

The mass of oxygen is 342.6 mg per 650 mg of the compound. This is roughly 50%, which is close to the calculated value of 52.7%.

Solutions for Practice Problems

Student Textbook page 204

5. **Problem**

Calculate the mass percent of nitrogen in each compound.

(a) N₂O
(b) Sr(NO₃)₂
(c) NH₄NO₃
(d) HNO₃

What Is Required?

You need to find the mass percent of nitrogen in the compounds listed.

What Is Given?

The molecular formula of each compound is given. This gives the total number of elements of each type in one mole of the compound.

(a) N₂O = 2 N and 1 O
(b) Sr(NO₃)₂ = 1 Sr, 2 N, and 6 O
(c) NH₄NO₃ = 2 N, 4 H, and 3 O
(d) HNO₃ = 1 H, 1 N, and 3 O

Plan Your Strategy

First calculate the molar mass of each compound. This is the sum of the molar masses of its component elements. To find the mass percent of nitrogen in the compound, divide the total molar mass of nitrogen in each compound by the molar mass of the compound, and multiply by 100%.

Act on Your Strategy

(a) Molar mass of N₂O = 2(Molar mass of N) + Molar mass of O

\[= 2(14.01 \text{ g/mol}) + 16.00 \text{ g/mol} \]

\[= 44.02 \text{ g/mol} \]
Total molar mass of N in N₂O = 2(Molar mass of N)
= 2(14.01 g/mol)
= 28.02 g/mol

Mass percent N in N₂O = \frac{\text{Total molar mass of N}}{\text{Molar mass N₂O}} \times 100\%
= \frac{28.02 \text{ g/mol}}{44.02 \text{ g/mol}} \times 100\%
= 63.65\%

(b) Molar mass of Sr(NO₃)₂
= Molar mass of Sr + 2(Molar mass of N) + 6(Molar mass of O)
= 87.62 g/mol + 2(14.01 g/mol) + 6(16.00 g/mol)
= 211.64 g/mol

Total molar mass of N in Sr(NO₃)₂ = 2(Molar mass of N)
= 2(14.01 g/mol)
= 28.02 g/mol

Mass percent N in Sr(NO₃)₂ = \frac{\text{Total molar mass of N}}{\text{Molar mass Sr(NO₃)₂}} \times 100\%
= \frac{28.02 \text{ g/mol}}{211.64 \text{ g/mol}} \times 100\%
= 13.24\%

(c) Molar mass of NH₄NO₃
= 2(Molar mass of N) + 4(Molar mass of H) + 3(Molar mass of O)
= 2(14.01 g/mol) + 4(1.01 g/mol) + 3(16.00 g/mol)
= 80.06 g/mol

Total molar mass of N in NH₄NO₃ = 2(Molar mass of N)
= 2(14.01 g/mol)
= 28.02 g/mol

Mass percent N in NH₄NO₃ = \frac{\text{Total molar mass of N}}{\text{Molar mass NH₄NO₃}} \times 100\%
= \frac{28.02 \text{ g/mol}}{80.06 \text{ g/mol}} \times 100\%
= 35.00\%

(d) Molar mass of HNO₃
= Molar mass of H + Molar mass of N + 3(Molar mass of O)
= 1.01 g/mol + 14.01 g/mol + 3(16.00 g/mol)
= 63.02 g/mol

Total molar mass of N in HNO₃ = 1(Molar mass of N)
= 14.01 g/mol

Mass percent N in HNO₃ = \frac{\text{Total molar mass of N}}{\text{Molar mass HNO₃}} \times 100\%
= \frac{14.01 \text{ g/mol}}{63.02 \text{ g/mol}} \times 100\%
= 22.23\%

Check Your Solution
You can calculate the mass percent of the other elements in each compound in the same way. The total mass percents should equal 100%. For example, in N₂O, the mass percent of O is \(\frac{16 \text{ g/mol}}{44.02 \text{ g/mol}} \times 100\% = 36.35\%\). The mass percent of the nitrogen was 63.65\%. Both mass percents total 100%.
6. Problem

Sulfuric acid, \(\text{H}_2\text{SO}_4 \), is an important acid in laboratories and industries. Determine the percentage composition of sulfuric acid.

What Is required?
You need to find the mass percents of hydrogen, sulfur, and oxygen in the sulfuric acid.

What Is Given?
The molecular formula of sulfuric acid is given. This indicates the number of elements of each type in the compound.
\[\text{H}_2\text{SO}_4 = 4 \text{ H, 1 S, and 4 O} \]

Plan Your Strategy
First determine the molar mass of the compound. To find the percentage composition of the compound, find the mass percent of each element. To do this, divide the total molar mass of each element by the molar mass of the compound and multiply by 100%.

Act on Your Strategy

Molar mass of \(\text{H}_2\text{SO}_4 \)
\[= 2(\text{Molar mass of H}) + \text{Molar mass of S} + 4(\text{Molar mass of O}) \]
\[= 2(1.01 \text{ g/mol}) + 32.07 \text{ g/mol} + 4(16.00 \text{ g/mol}) \]
\[= 98.09 \text{ g/mol} \]

Mass percent of \(\text{H} \)
\[= \frac{\text{Total molar mass of H}}{\text{Molar mass H}_2\text{SO}_4} \times 100\% \]
\[= \frac{2.02 \text{ g/mol}}{98.09 \text{ g/mol}} \times 100\% \]
\[= 2.06\% \]

Mass percent of \(\text{S} \)
\[= \frac{\text{Total molar mass of S}}{\text{Molar mass H}_2\text{SO}_4} \times 100\% \]
\[= \frac{32.07 \text{ g/mol}}{98.09 \text{ g/mol}} \times 100\% \]
\[= 32.7\% \]

Mass percent of \(\text{O} \)
\[= \frac{\text{Total molar mass of O}}{\text{Molar mass H}_2\text{SO}_4} \times 100\% \]
\[= \frac{64.00 \text{ g/mol}}{98.09 \text{ g/mol}} \times 100\% \]
\[= 65.2\% \]

The percentage composition of sulfuric acid is 2.06% hydrogen, 32.7% sulfur, and 65.2% oxygen.

Check Your Solution
The mass percents add up to 100%.

7. Problem

Potassium nitrate, \(\text{KNO}_3 \), is used in fireworks. What is the mass percent of oxygen in potassium nitrate?

What Is required?
You need to find the mass percent of oxygen in the potassium nitrate.

What Is Given?
The molecular formula of \(\text{KNO}_3 \) is given. This indicates the number of elements of each type in the compound.
\[\text{KNO}_3 = 1 \text{ K, 1 N, and 3 O} \]

...
Plan Your Strategy
First determine the molar mass of the compound. To find the mass percent of oxygen, divide the total molar mass of oxygen by the molar mass of the compound and multiply by 100%.

Act on Your Strategy
Molar mass of \(\text{KNO}_3 \) = Molar mass of K + Molar mass of N + 3(Molar mass of O)
\[= 39.10 \text{ g/mol} + 14.01 \text{ g/mol} + 3(16.00 \text{ g/mol}) \]
\[= 101.11 \text{ g/mol} \]
Total molar mass of O = 3(Molar mass of O)
\[= 3(16.00 \text{ g/mol}) \]
\[= 48.00 \text{ g/mol} \]
Mass percent of O = \(\frac{\text{Total molar mass of O}}{\text{Molar mass KNO}_3} \times 100\% \)
\[= \frac{48.00 \text{ g/mol}}{101.11 \text{ g/mol}} \times 100\% \]
\[= 47.47\% \]

Check Your Solution
You can calculate the mass percent of the other elements in the compound in the same way. The total mass percents should add up to 100%.

8. Problem
A mining company wishes to extract manganese metal from pyrolusite ore, \(\text{MnO}_2 \).
(a) What is the percentage composition of pyrolusite ore?
(b) Use your answer from part (a) to calculate the mass of pure manganese that can be extracted from 250 kg pyrolusite ore.

What Is Required?
(a) You need to find the mass percents of manganese and oxygen in the pyrolusite ore.
(b) You need to find the mass of the manganese in 250 kg of pyrolusite ore.

What Is given?
(a) The molecular formula of pyrolusite ore is given. This indicates the number of elements of each type in the compound.
\(\text{MnO}_2 = 1 \text{ Mn and 2 O} \)
(b) The mass of the pyrolusite is given.
\(\text{MnO}_2 = 250 \text{ kg} \)

Plan Your Strategy
(a) First determine the molar mass of the compound. To find the mass percent of each element, divide the total molar mass of the element by the molar mass of the compound and multiply by 100%.
(b) To find the mass of manganese in the pyrolusite ore, multiply the mass percent of manganese by the mass of the ore.
First determine the molar mass of the compound. To find the mass percent of oxygen, divide the total molar mass of oxygen by the molar mass of the compound and multiply by 100%.

Act on Your Strategy
(a) Molar mass of \(\text{MnO}_2 \) = Molar mass of Mn + 2(Molar mass of O)
\[= 54.94 \text{ g/mol} + 2(16.00 \text{ g/mol}) \]
\[= 86.94 \text{ g/mol} \]
Mass percent of Mn = \(\frac{\text{Total molar mass of Mn}}{\text{Molar mass of MnO}_2} \times 100\% \)
\[
= \frac{54.94}{86.94} \times 100\% = 63.19\%
\]

Mass percent of O = \(\frac{\text{Total molar mass of O}}{\text{Molar mass of MnO}_2} \times 100\% \)
\[
= \frac{32.00}{86.94} \times 100\% = 36.81\%
\]

The percentage composition of pyrolusite ore is 63.19% manganese and 36.81% oxygen.

(b) The mass of manganese in 250 kg of MnO\(_2\) = Mass percent of Mn \times 250 kg
\[
= (63.19 / 100) \times 250 kg = 158 kg
\]

Check Your Solution
(a) The mass percents add up to 100%.
(b) Calculated similarly, the mass of oxygen in the pyrolusite ore is 36.81% \times 250 kg = 92 kg. The masses of manganese and oxygen (i.e. 158 kg + 92 kg) add up to 250 kg.

Solutions for Practice Problems
Student Textbook page 209

9. Problem
A compound consists of 17.6% hydrogen and 82.4% nitrogen. Determine the empirical formula of the compound.

What Is Required?
You need to find the empirical formula of the compound.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. From the given mass percents of the elements in the compound, you can determine the mass of the element. This means you have 17.6 g of hydrogen and 82.4 g of nitrogen. Convert each mass to moles using the molar mass of the element. The number of moles can then be converted into a lower terms ratio of the element to get the empirical formula.

Act on Your Strategy
Number of moles of H in 100 g sample = \(\frac{\text{Mass of H}}{\text{Molar mass of H}} \)
\[
= \frac{17.6 \text{ g}}{1.01 \text{ g/mol}} = 17.425 \text{ mol}
\]

Number of moles of N in 100 g sample = \(\frac{\text{Mass of N}}{\text{Molar mass of N}} \)
\[
= \frac{82.4 \text{ g}}{14.01 \text{ g/mol}} = 5.882 \text{ mol}
\]

The lowest whole number ratio = \(\frac{\text{molar amount}}{\text{lowest molar amount}} \)
\[
H_{17.425}N_{5.882} \rightarrow H_{2.96}N_{1} \rightarrow H_3N_1
\]
Alternatively, you can set your solution as a table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>17.6</td>
<td>17.6</td>
<td>1.01</td>
<td>17.425</td>
<td>5.882/5.882=1</td>
</tr>
<tr>
<td>N</td>
<td>82.4</td>
<td>82.4</td>
<td>14.01</td>
<td>5.882</td>
<td></td>
</tr>
</tbody>
</table>

The empirical formula of the compound is H$_3$N$_1$ or NH$_3$.

Check Your Solution

Work backward. Calculate the percentage composition of NH$_3$.

\[
\text{Mass percent of N} = \frac{14.01 \text{ g/mol}}{17.04 \text{ g/mol}} \times 100% = 82.2%
\]

\[
\text{Mass percent of H} = \frac{3.03 \text{ g/mol}}{17.04 \text{ g/mol}} \times 100% = 17.8%
\]

These calculated values are very close to the given percentage compositions (variations arise depending on the periodic table value used for the molar mass of N and H, which differs in different publications).

10. **Problem**

Find the empirical formula of a compound that is 46.3% lithium and 53.7% oxygen.

What Is Required?

You need to find the empirical formula of the compound.

What Is Given?

You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy

Assume you have 100 g of the compound. From the given mass percents of the elements in the compound, you can determine the mass of the element. This means you have 46.3 g of lithium and 53.7 g of oxygen. Convert each mass to moles using the molar mass of the element. The number of moles can then be converted into a lower terms ratio of the element to get the empirical formula.

Act on Your Strategy

Number of moles of Li in 100 g sample = \(\frac{\text{Mass of Li}}{\text{Molar mass of Li}}\) = \(\frac{46.3 \text{ g}}{6.94 \text{ g/mol}}\) = 6.67 mol

Number of moles of O in 100 g sample = \(\frac{\text{Mass of O}}{\text{Molar mass of O}}\) = \(\frac{53.7 \text{ g}}{16.00 \text{ g/mol}}\) = 3.35 mol

The lowest whole number ratio = \(\frac{\text{molar amount}}{\text{lowest molar amount}}\) = \(\frac{6.67}{3.35}\) = 2.0

Li$_{6.67}$O$_{3.35}$ \(\rightarrow\) Li$_{1.99}$O$_{1.00}$ \(\rightarrow\) Li$_2$O$_1$

Alternatively, you can set your solution as a table.
The empirical formula of the compound is Li₂O₁ or Li₂O.

Check Your Solution
Work backward. Calculate the percentage composition of Li₂O.

Mass percent of Li = \(\frac{13.88 \, \text{g/mol}}{29.88 \, \text{g/mol}} \times 100\% = 46.45\% \)

Mass percent of O = \(\frac{16.00 \, \text{g/mol}}{29.88 \, \text{g/mol}} \times 100\% = 53.55\% \)

These calculated values are very close to the given percentage compositions (variations arise depending on the periodic table value used for the molar mass of Li and O, which differs in different publications).

11. Problem
What is the empirical formula of a compound that is 15.9% boron and 84.1% fluorine.

What Is Required?
You need to find the empirical formula of the compound.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. From the given mass percents of the elements in the compound, you can determine the mass of the element. This means you have 15.9 g of boron and 84.1 g of fluorine. Convert each mass to moles using the molar mass of the element. The number of moles can then be converted into a lower terms ratio of the element to get the empirical formula.

Act on Your Strategy
Number of moles of B in 100 g sample = \(\frac{\text{Mass of B}}{\text{Molar mass of B}} = \frac{15.9 \, \text{g}}{10.81 \, \text{g/mol}} = 1.47 \, \text{mol} \)

Number of moles of F in 100 g sample = \(\frac{\text{Mass of F}}{\text{Molar mass of F}} = \frac{84.1 \, \text{g}}{19.00 \, \text{g/mol}} = 4.43 \, \text{mol} \)

The lowest whole number ratio = \(\frac{\text{molar amount}}{\text{lowest molar amount}} = \frac{1.47}{4.43} = 0.335 \)

\(\text{B}_{1.00} \text{F}_{3.01} \rightarrow \text{BF}_3 \)

Alternatively, you can set your solution as a table.
The empirical formula of the compound is BF₃.

Check Your Solution
Work backward. Calculate the percentage composition of BF₃.

Mass percent of B = \(\frac{10.81}{67.81} \times 100\% \)
= 15.9%

Mass percent of F = \(\frac{19.00}{67.81} \times 100\% \)
= 84.1%

These calculated values are the same as the given percentage compositions.

12. Problem
Determine the empirical formula of a compound made up of 52.51% chlorine and 47.48% sulfur.

What Is Required?
You need to find the empirical formula of the compound.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. From the given mass percents of the elements in the compound, you can determine the mass of the element. This means you have 52.51 g of chlorine and 47.48 g of sulfur. Convert each mass to moles using the molar mass of the element. The number of moles can then be converted into a lower terms ratio of the element to get the empirical formula.

Act on Your Strategy
Number of moles of Cl in 100 g sample = \(\frac{52.51}{35.45} \text{ mol} \)
= 1.48 mol

Number of moles of S in 100 g sample = \(\frac{47.48}{32.07} \text{ mol} \)
= 1.48 mol

The lowest whole number ratio = \(\frac{1.48}{1.48} = 1 \)

Cl₁.₄₈S₁.₄₈ → Cl₁.₀₀S₁.₀₀ → ClS

Alternatively, you can set your solution as a table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>52.51</td>
<td>52.51</td>
<td>35.45</td>
<td>1.48</td>
<td>1.48/1.48=1</td>
</tr>
<tr>
<td>S</td>
<td>47.48</td>
<td>47.48</td>
<td>32.07</td>
<td>1.48</td>
<td>1.48/1.48=1</td>
</tr>
</tbody>
</table>

The empirical formula of the compound is ClS.
Check Your Solution
Work backward. Calculate the percentage composition of ClS.

Mass percent of Cl = \(\frac{35.45 \text{ g/mol}}{67.52 \text{ g/mol}} \times 100\% = 52.5\% \)

Mass percent of S = \(\frac{32.07 \text{ g/mol}}{67.52 \text{ g/mol}} \times 100\% = 47.5\% \)

These calculated values are the same as the given percentage compositions.

Solutions for Practice Problems
Student Textbook page 211

13. Problem
An oxide of chromium is made up of 68.4% chromium and 31.6% oxygen. What is the empirical formula of this oxide?

What Is Required?
You need to find the empirical formula of this oxide of chromium.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. Convert the mass percents of the elements to mass, then to the number of moles. Then find the lowest whole number ratio.

Act on Your Strategy

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>68.4</td>
<td>68.4</td>
<td>52.00</td>
<td>1.315</td>
<td>1.00</td>
</tr>
<tr>
<td>O</td>
<td>31.6</td>
<td>31.6</td>
<td>16.00</td>
<td>1.975</td>
<td>1.50</td>
</tr>
</tbody>
</table>

You now have the empirical formula \(\text{Cr}_1\text{O}_{1.50} \). Convert the subscript 1.50 \((3/2)\) to a whole number. \(\text{Cr}_{1 \times 2}\text{O}_{1.5 \times 2} = \text{Cr}_2\text{O}_3 \).

The empirical formula of the compound is \(\text{Cr}_2\text{O}_3 \).

Check Your Solution
Work backward. Calculate the percentage composition of \(\text{Cr}_2\text{O}_3 \).

Mass percent of Cr = \(\frac{104.00 \text{ g/mol}}{152.00 \text{ g/mol}} \times 100\% = 68.4\% \)

Mass percent of O = \(\frac{48.00 \text{ g/mol}}{152.00 \text{ g/mol}} \times 100\% = 31.6\% \)

These calculated values are the same as the given percentage compositions.

14. Problem
Phosphorus reacts with oxygen to give a compound that is 43.7% phosphorus and 56.4% oxygen. What is the empirical formula of the compound?

What Is Required?
You need to find the empirical formula of this compound.
What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. Convert the mass percents of the elements to mass, then to the number of moles. Then find the lowest whole number ratio.

Act on Your Strategy

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>43.7</td>
<td>43.7</td>
<td>30.97</td>
<td>1.411</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>56.4</td>
<td>56.4</td>
<td>16.00</td>
<td>3.525</td>
<td>2.498</td>
</tr>
</tbody>
</table>

You now have the empirical formula $P_{1.002}O_{2.498}$. Convert the subscript 2.498 ($5/2$) to a whole number. $P_{1.002}O_{2.498 \times 2} = P_2O_5$.

The empirical formula of the compound is P_2O_5.

Check Your Solution
Work backward. Calculate the percentage composition of P_2O_5.

Mass percent of $P = \frac{61.94}{141.8} \times 100\% = 43.7\%$

Mass percent of $O = \frac{80.00}{141.8} \times 100\% = 56.4\%$

These calculated values are the same as the given percentage compositions.

15. Problem
An inorganic salt is composed of 17.6% sodium, 39.7% chromium, and 42.8% oxygen. What is the empirical formula of this salt?

What Is Required?
You need to find the empirical formula of this inorganic salt.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. Convert the mass percents of the elements to mass, then to the number of moles. Then find the lowest whole number ratio.

Act on Your Strategy

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>17.6</td>
<td>17.6</td>
<td>22.99</td>
<td>0.765</td>
<td>1.002</td>
</tr>
<tr>
<td>Cr</td>
<td>39.7</td>
<td>39.7</td>
<td>52.00</td>
<td>0.763</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>42.8</td>
<td>42.8</td>
<td>16.00</td>
<td>2.675</td>
<td>3.505</td>
</tr>
</tbody>
</table>

You now have the empirical formula $Na_{1.002}Cr_{1.000}O_{3.505}$. Convert the subscript 3.505 ($7/2$) to a whole number. $Na_{1.002}Cr_{1.000}O_{3.505 \times 2} = Na_2Cr_2O_7$.

The empirical formula of the compound is $Na_2Cr_2O_7$.
Check Your Solution
Work backward. Calculate the percentage composition of Na₂Cr₂O₇.

Mass percent of Na = \(\frac{45.98 \text{ g/mol}}{261.98 \text{ g/mol}} \times 100\% = 17.6\% \)

Mass percent of Cr = \(\frac{104.00 \text{ g/mol}}{261.98 \text{ g/mol}} \times 100\% = 39.7\% \)

Mass percent of O = \(\frac{112.00 \text{ g/mol}}{261.98 \text{ g/mol}} \times 100\% = 42.8\% \)

These calculated values are the same as the given percentage compositions.

16. Problem

Compound X contains 69.9% carbon, 6.86% hydrogen, and 23.3% oxygen. Determine the empirical formula of compound X.

What Is Required?
You need to find the empirical formula of compound X.

What Is Given?
You know the percentage composition of the compound. You have access to a periodic table.

Plan Your Strategy
Assume you have 100 g of the compound. Convert the mass percents of the elements to mass, then to the number of moles. Then find the lowest whole number ratio.

Act on Your Strategy

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass percent (%)</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>69.9</td>
<td>69.9</td>
<td>12.01</td>
<td>5.820</td>
<td>3.99</td>
</tr>
<tr>
<td>H</td>
<td>6.86</td>
<td>6.86</td>
<td>1.01</td>
<td>6.792</td>
<td>4.665</td>
</tr>
<tr>
<td>O</td>
<td>23.3</td>
<td>23.3</td>
<td>16.00</td>
<td>1.456</td>
<td>1.000</td>
</tr>
</tbody>
</table>

You now have the empirical formula C₃.₉₉H₄₆₆₆₄O₁.₀₀₀. Convert the subscripts 3.₉₉ (12/3) and 4.₆₆₆₅ (14/3) to whole numbers. C₃₉₉₉₄₆₆₅₃O₁₈₅₃ = C₁₂H₁₄O₃. The empirical formula of the compound is C₁₂H₁₄O₃.

Check Your Solution

Work backward. Calculate the percentage composition of C₁₂H₁₄O₃.

Mass percent of C = \(\frac{144.12 \text{ g/mol}}{206.26 \text{ g/mol}} \times 100\% = 69.9\% \)

Mass percent of H = \(\frac{14.4 \text{ g/mol}}{206.26 \text{ g/mol}} \times 100\% = 6.86\% \)

Mass percent of O = \(\frac{48.00 \text{ g/mol}}{206.26 \text{ g/mol}} \times 100\% = 23.3\% \)

These calculated values are the same as the given percentage compositions.
17. Problem
The empirical formula of butane, the fuel used in disposable lighters, is C₂H₅. In an experiment, the molar mass of butane was determined to be 58 g/mol. What is the molecular formula of butane?

What Is Required?
You need to find the molecular formula of butane.

What Is Given?
You know the empirical formula and the molar mass of butane.

Plan Your Strategy
Divide the molar mass of butane by the “molar mass” of the empirical formula. The answer you get is the factor by which you multiply the empirical formula.

Act on Your Strategy
The “molar mass” of the empirical formula C₂H₅, determined using the periodic table, is
\[
2(12.01 \text{ g/mol}) + 5(1.01 \text{ g/mol}) = 29.07 \text{ g/mol}
\]
The molar mass of butane is \(\frac{58 \text{ g/mol}}{29.07 \text{ g/mol}} = 2 \)
Molecular formula subscripts = \(2 \times \) Empirical formula subscripts
\[= C_{2\times2}H_{5\times2}\]
\[= C_4H_{10}\]
Therefore, the molecular formula of butane is C₄H₁₀.

Check Your Solution
Work backward by calculating the molar mass of C₄H₁₀.
\[
(4 \times 12.01 \text{ g/mol}) + (10 \times 1.01 \text{ g/mol}) = 58 \text{ g/mol}
\]
The calculated molar mass matches the molar mass that is given in the problem. The answer is reasonable.

18. Problem
Oxalic acid has the empirical formula CHO₂. Its molar mass is 90 g/mol. What is the molecular formula of oxalic acid?

What Is Required?
You need to find the molecular formula of oxalic acid.

What Is Given?
You know the empirical formula and the molar mass of oxalic acid.

Plan Your Strategy
Divide the molar mass of oxalic acid by the “molar mass” of the empirical formula. The answer you get is the factor by which you multiply the empirical formula.

Act on Your Strategy
The “molar mass” of the empirical formula CHO₂, determined using the periodic table, is
\[
12.01 \text{ g/mol} + 1.01 \text{ g/mol} + 2(16.00 \text{ g/mol}) = 45.02 \text{ g/mol}
\]
The molar mass of oxalic acid is \(\frac{90 \text{ g/mol}}{45.02 \text{ g/mol}} = 2 \).
Molecular formula subscripts = 2 x Empirical formula subscripts
= C_1 x 2 H_1 x 2 O_2 x 2
= C_2 H_2 O_4

Therefore, the molecular formula of butane is C_2 H_2 O_4.

Check Your Solution
Work backward by calculating the molar mass of C_2 H_2 O_4.

(2 x 12.01 g/mol) + (2 x 1.01 g/mol) + (4 x 16.00 g/mol) = 90 g/mol

The calculated molar mass matches the molar mass that is given in the problem. The answer is reasonable.

19. Problem
The empirical formula of codeine is C_18 H_21 N O_3. If the molar mass of codeine is 299 g/mol, what is its molecular formula?

What Is Required?
You need to find the molecular formula of codeine.

What Is Given?
You know the empirical formula and the molar mass of codeine.

Plan Your Strategy
Divide the molar mass of codeine by the “molar mass” of the empirical formula. The answer you get is the factor by which you multiply the empirical formula.

Act on Your Strategy
The “molar mass” of the empirical formula C_18 H_21 N O_3, determined using the periodic table, is

18(12.01 g/mol) + 21(1.01 g/mol) + 14.01 g/mol + 3(16.00 g/mol) = 299.4 g/mol.

The molar mass of the codeine is the same as that of its empirical formula. Therefore, the molecular formula is the same as its empirical formula: C_18 H_21 N O_3.

Check Your Solution
The calculated molar masses are the same, so the formula should be the same. The answer is reasonable.

20. Problem
A compound’s molar mass is 240.28 g/mol. Its percentage composition is 75.0% carbon, 5.05% hydrogen, and 20.0% oxygen. What is the compound’s molecular formula?

What Is Required?
You need to find the molecular formula of the unknown compound.

What Is Given?
You know the mass percent of the elements in the compound. You also know the molar mass of the compound.

Plan Your Strategy
(a) First determine the empirical formula. Assume you have 100 g of the compound. Convert the mass percents of the elements to mass, then to the number of moles. Then find the lowest whole number ratio.

(b) To determine the molecular formula, divide the molar mass of oxalic acid by the “molar mass” of the empirical formula. The answer you get is the factor by which you multiply the empirical formula.

Act on Your Strategy
(a) Consider a 100 g sample:

<table>
<thead>
<tr>
<th>Element</th>
<th>Grams per 100 g sample (g)</th>
<th>Molar mass (g/mol)</th>
<th>Number of moles (mol)</th>
<th>Molar amount + lowest molar amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>75.0</td>
<td>12.01</td>
<td>75.0 / 12.01 = 6.25</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>5.05</td>
<td>1.01</td>
<td>5.05 / 1.01 = 5.00</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>20.0</td>
<td>16.00</td>
<td>20.0 / 16.01 = 1.25</td>
<td>1</td>
</tr>
</tbody>
</table>

The empirical formula of the compound is C5H4O.

(b) The “molar mass” of the empirical formula C5H4O, determined using the periodic table, is

\[5(12.01 \text{ g/mol}) + 4(1.01 \text{ g/mol}) + 16.00 \text{ g/mol} = 80.1 \text{ g/mol} \]

The molar mass of the compound is \(\frac{240.28 \text{ g/mol}}{80.1 \text{ g/mol}} = 3.0 \)

Molecular formula subscripts = \(3 \times \) Empirical formula subscripts

\[= C_{5\times3}H_{4\times3}O_{1\times3} \]

\[= C_{15}H_{12}O_{3} \]

Therefore, the molecular formula of this unknown compound is \(C_{15}H_{12}O_{3} \).

Check Your Solution

Work backward by calculating the molar mass of \(C_{15}H_{12}O_{3} \).

\[(15 \times 12.01 \text{ g/mol}) + (12 \times 1.01 \text{ g/mol}) + (3 \times 16.00 \text{ g/mol}) = 240.27 \text{ g/mol} \]

The calculated molar mass matches the molar mass that is given in the problem. The answer is reasonable.

Solutions for Practice Problems

Student Textbook page 221

21. **Problem**

A 0.539 g sample of a compound that contained only carbon and hydrogen was subjected to combustion analysis. The combustion produced 1.64 g of carbon dioxide and 0.807 g of water. Calculate the percentage composition and the empirical formula of the sample.

What Is Required?

(a) You need to find the mass percent of carbon and hydrogen in the sample.

(b) You need to find the empirical formula of the compound.

What Is Given?

You know the mass of the sample. You also know the masses of the water and the carbon dioxide in the combustion of the sample.

Plan Your Strategy

(a) All the carbon was converted into the carbon dioxide, and all the hydrogen was converted into water. Therefore, the mass percent of C in the sample substrate is its mass in \(\text{CO}_2 \) divided by the mass of the sample substrate, multiplied by 100%. Similarly, the mass percent of H in the sample is its mass in water divided by the mass of the sample substrate, multiplied by 100%. You obtain this mass by dividing the total molar mass of the element (H or C) in the products (\(\text{H}_2\text{O} \) or \(\text{CO}_2 \)) by the molecular mass of the products, and multiplying by the given mass of the products.
To determine the empirical formula of the substrate sample, convert the calculated masses of the C and H in (a) to the number of moles using the molar masses of C and H, respectively. Then find the lowest whole number ratio.

Act on Your Strategy

(a) Mass of carbon in the carbon dioxide produced

\[
\text{Mass of carbon} = \frac{12.01 \text{ g/mol}}{44.01 \text{ g/mol}} \times 1.64 \text{ g} = 0.44754 \text{ g}
\]

Mass percent of C in the sample

\[
\text{Mass percent of C} = \frac{0.44754 \text{ g}}{0.538 \text{ g}} \times 100\% = 83.19\%
\]

Mass of hydrogen in the water produced

\[
\text{Mass of hydrogen} = \frac{2.02 \text{ g/mol}}{18.02 \text{ g/mol}} \times 0.807 \text{ g} = 0.09046 \text{ g}
\]

Mass percent of H in sample

\[
\text{Mass percent of H} = \frac{0.09046 \text{ g}}{0.538 \text{ g}} \times 100\% = 16.81\%
\]

Thus the percentage composition of the unknown sample is 83.19% C and 16.81% H.

(b) Moles of C in sample

\[
\text{Moles of C} = \frac{0.44754 \text{ g}}{12.01 \text{ g/mol}} = 0.03726 \text{ mol}
\]

Moles of H in sample

\[
\text{Moles of H} = \frac{0.09046 \text{ g}}{1.01 \text{ g/mol}} = 0.8956 \text{ mol}
\]

Empirical formula

\[
\text{Empirical formula} = \text{C}_0.03726 \text{H}_{0.8956} = \text{C}_1\text{H}_{2.404}
\]

Convert the subscript 2.404 \((\frac{12}{5})\) to a whole number. \(\text{C}_{1.8\times5}\text{H}_{12.404\times5} = \text{C}_5\text{H}_{12}\).

Thus the empirical formula is \(\text{C}_5\text{H}_{12}\).

Check Your Solution

(a) The sum of the masses of carbon and hydrogen is 0.44754 g + 0.09046 g = 0.538 g. This is close to the given mass of the sample.

(b) Work backward. Calculate the percentage composition of \(\text{C}_5\text{H}_{12}\).

Mass percent of C

\[
\text{Mass percent of C} = \frac{60.05 \text{ g/mol}}{72.17 \text{ g/mol}} \times 100\% = 83.21\%
\]

Mass percent of H

\[
\text{Mass percent of H} = \frac{12.12 \text{ g/mol}}{72.17 \text{ g/mol}} \times 100\% = 16.79\%
\]

These mass percent values are close to the values calculated in part (a). Therefore your answers are reasonable.

22. Problem

An 874 mg sample of cortisol was subjected to carbon-hydrogen combustion analysis. 2.23 g of carbon dioxide and 0.652 g of water were produced. The molar mass of cortisol was found to be 362 g/mol using a mass spectrometer. If cortisol contains carbon, hydrogen, and oxygen, determine its molecular formula.

What Is Required?

You need to find the molecular formula of cortisol.

What Is Given?

The mass of the sample cortisol is given, as well as the masses of the carbon dioxide and water produced. The molar mass of cortisol is also given.

Plan Your Strategy

The empirical formula of cortisol must first be found in order to determine its molecular formula. Therefore, the number of moles of C, H, and O in cortisol has to be determined for the mole ratio. In a complete reaction, all the C would have been converted to \(\text{CO}_2\) and all the H to \(\text{H}_2\text{O}\). Therefore, the masses of C and H in the products are the same as that in the 874 mg sample of cortisol.
(a) You first obtain this mass by dividing the total molar mass of the element (H or C) in the products (H₂O or CO₂) by the molecular mass of the products, and multiplying by the given mass of the products.

(b) By the Law of Conservation of Mass, the mass of the O in the sample of cortisol as the given mass of cortisol minus the sum of the calculated masses of C and H.

(c) Finally, convert the masses of the C, H and O calculated in (a) and (b) to the number of moles using the molar masses of C, H, and O, respectively. Then find the lowest whole number ratio.

Act on Your Strategy

(a) Mass of carbon in the CO₂ produced = \[\frac{12.01 \text{ g/mol}}{44.01 \text{ g/mol}} \times 2.23 \text{ g} = 0.60855 \text{ g} \]

Mass of hydrogen in the H₂O produced = \[\frac{2.02 \text{ g/mol}}{18.02 \text{ g/mol}} \times 0.652 \text{ g} = 0.07308 \text{ g} \]

(b) Using the Law of Conservation of Mass, the O in the original compound = \[0.874 \text{ g} - (0.60855 \text{ g} + 0.07308 \text{ g}) = 0.19237 \text{ g} \]

(c) Moles of C in cortisol = \[\frac{0.60855 \text{ g}}{12.01 \text{ g/mol}} = 0.05067 \text{ mol} \]

Moles of H in cortisol = \[\frac{0.07308 \text{ g}}{1.01 \text{ g/mol}} = 0.07235 \text{ mol} \]

Moles of O in cortisol = \[\frac{0.19237 \text{ g}}{16.00 \text{ g/mol}} = 0.01202 \text{ mol} \]

Empirical formula = \[C_0.05067 : H_0.07235 : O_0.01202 \]

= \[C_{4.21}H_{6.02}O_{1.00} \]

Convert the subscripts 4.21 (\(\frac{21}{5} \)) and 6.02 (\(\frac{30}{5} \)) to whole numbers.

\[C_{4.21 \times 5}H_{6.02 \times 5}O_{1 \times 5} = C_{21}H_{30}O_{5} \]

The “molar mass” of this empirical formula is

\[= 21(12.01 \text{ g/mol}) + 30(1.01 \text{ g/mol}) + 5(16.00 \text{ g/mol}) = 362.51 \text{ g/mol} \]

Since the given molar mass of cortisol was 362 g/mol, then the molecular formula is the same as the empirical formula, \(C_{21}H_{30}O_{5} \).

Check Your Solution

The calculated molar masses are the same, so the formula should be the same. The answer is reasonable.

Solutions for Practice Problems

Student Textbook page 225

23. Problem

What is the percent by mass of water in magnesium sulfite hexahydrate, \(\text{MgSO}_3 \cdot 6\text{H}_2\text{O} \)?

What Is Required?

You need to find the mass percent of water in the magnesium sulfite hexahydrate.

What Is Given?

The molecular formula of the sample is \(\text{MgSO}_3 \cdot 6\text{H}_2\text{O} \).

Plan Your Strategy

Calculate the molar mass of the magnesium sulfite hexahydrate. Then calculate the total molar mass of the water portion of the substance. The mass percent is the molar mass of the water divided by the molar mass of the substance, multiplied by 100%.

Act on Your Strategy

Molar mass of \(\text{MgSO}_3 \cdot 6\text{H}_2\text{O} \)
= 24.31 g/mol + 32.07 g/mol + 3(16.00 g/mol) + 6[2(1.01 g/mol) + 16.00 g/mol]
= 212.50 g/mol
Molar mass of water portion = 6[2(1.01) + 16.00] = 108.12 g/mol
Mass percent of water = \(\frac{108.12 \text{ g/mol}}{212.50 \text{ g/mol}} \times 100\% \)
= 50.8%

Check Your Solution
Similarly, the mass percent of the MgSO₃ portion is
\(\frac{24.31 \text{ g/mol} + 32.07 \text{ g/mol} + 3(16.00 \text{ g/mol})}{212.50 \text{ g/mol}} \times 100\% = 49.2\% \)
The two mass percents add up to 100%.

24. Problem
A 3.34 g sample of a hydrate has the formula SrS₂O₃ • \(x \) H₂O, and contains 2.30 g of SrS₂O₃. Find the value of \(x \).

What Is Required?
You need to find how many water molecules are bonded to each formula unit of SrS₂O₃.

What Is Given?
The mass of the sample is given, as well as the mass of the SrS₂O₃ portion of the hydrate. The formula of the hydrate is given.

Plan Your Strategy
To find the mass of water in the hydrate, subtract the given mass of SrS₂O₃ from the given mass of the hydrate. Then, find the number of moles of SrS₂O₃ and H₂O by dividing their mass by their respective molar mass. To find out how many water molecules bond to each formula unit of SrS₂O₃, divide each mole value obtained by the number of moles of SrS₂O₃.

Act on Your Strategy
Mass of water portion = Mass of hydrate − Mass of SrS₂O₃
= 3.34 g − 2.30 g
= 1.04 g
Moles of SrS₂O₃ = \(\frac{2.30 \text{ g}}{199.76 \text{ g/mol}} \) = 0.0115 mol
Moles of H₂O = \(\frac{1.04 \text{ g}}{18.02 \text{ g/mol}} \) = 0.0577 mol
The mole ratio is
\(\frac{0.0115}{0.0115} \text{ mol SrS₂O₃} : \frac{0.0577}{0.0115} \text{ mol H₂O} = 1 \text{ mol SrS₂O₃} : 5.02 \text{ mol H₂O} \), which is rounded off to 1 mol SrS₂O₃ : 5 mol H₂O.
The value of \(x \) in SrS₂O₃ • \(x \) H₂O is 5. Therefore the molecular formula is SrS₂O₃ • 5H₂O.

Check Your Solution
According to the formula, the percent by mass of water in SrS₂O₃ • 5H₂O is
\(\frac{5(18.02 \text{ g/mol})}{289.86 \text{ g/mol}} \times 100\% = 31.08\% \). The percent by mass of the SrS₂O₃ is
\(\frac{199.76 \text{ g/mol}}{289.86 \text{ g/mol}} \times 100\% = 68.92\% \). The two mass percents add up to 100%.

25. Problem
A hydrate of zinc chlorate, Zn(ClO₃)₂ • \(x \) H₂O, contains 21.5% zinc by mass. Find the value of \(x \).
What Is Required?
You need to find out how many water molecules are bonded to each formula unit of Zn(ClO₃)₂.

What Is Given?
The mass percent of zinc is given, as well as the formula of the zinc chlorate.

Plan Your Strategy
Find the molar mass of the zinc hydrate in terms of \(x \) by adding up the molar masses of all the elements in the given formula. Equate the given mass percent of Zn as being the molar mass of Zn divided by the calculated molar mass of the zinc chlorate in terms of \(x \), multiplied by 100%. In this way, \(x \) can be solved.

Act on Your Strategy
Molar mass of the Zn(ClO₃)₂ \(\cdot x \)H₂O in terms of \(x \)

\[
= 65.39 \text{ g/mol} + 2[35.45 \text{ g/mol} + 3(16.00 \text{ g/mol})] + x[2(1.01 \text{ g/mol}) + 16.00 \text{ g/mol}]
\]

\[
= 232.29 \text{ g/mol} + 18.02x \text{ g/mol}
\]

Mass percent of Zn = 21.5% = \[
\frac{65.39 \text{ g/mol}}{232.29 \text{ g/mol} + 18.02x \text{ g/mol}} \times 100\%
\]

Therefore,

\[
21.5 \times (232.29 \text{ g/mol} + 18.02x \text{ g/mol}) = 65.39 \text{ g/mol} \times 100
\]

\[
4996.385 + 387.43x = 6539
\]

\[
387.43x = 1542.615
\]

\[
x = 3.987, \text{ which can be rounded off to 4.}
\]

The formula of the hydrate is Zn(ClO₃)₂ \(\cdot 4 \)H₂O.

Check Your Solution
According to the formula, the percent by mass of water in Zn(ClO₃)₂ \(\cdot 4 \)H₂O is

\[
\frac{4(18.02 \text{ g/mol})}{304.37 \text{ g/mol}} \times 100\% = 23.68\%. \text{ The percent by mass of the Zn(ClO₃)₂ is}
\]

\[
\frac{232.29 \text{ g/mol}}{304.37 \text{ g/mol}} \times 100\% = 76.32\%. \text{ The two mass percents add up to 100%.}
\]