Lesson 2 – Characteristics of Polynomial Functions

Terminology

Turning Point: a point on a curve where the function changes from increasing to decreasing, or vice versa.

Leading Coefficient: the coefficient of the term with the highest degree in a polynomial

Absolute Maximum/Minimum: the greatest/least value attained by a function for all values in its domain.

Example 1:

\[f(x) = 2x^6 - 12x^4 + 18x^2 + x - 10 \]

- Number of Turning Points: __________
- Leading Coefficient: __________
- Absolute Max/Min: __________

Odd/ Even Polynomial Functions:

A function is **even** if it has the property \(f(-x) = f(x) \)

A function is **odd** if it has the property \(f(-x) = -f(x) \)

Example 2: Determine if the following functions are odd, even, or neither.

a) \(f(x) = 2x^7 - 3x^3 + 2x \)

b) \(f(x) = -2x^6 - 3x^4 \)

c) \(f(x) = -5x^3 + 10x - 1 \)
<table>
<thead>
<tr>
<th>Equation and Graph</th>
<th>Degree</th>
<th>Even or Odd</th>
<th>Leading Coefficient</th>
<th>End Behaviors</th>
<th>Number of Turning Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = x^4 - 2x^2 + 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = x^3 + 3x^2 - 2x - 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = -\frac{1}{2}x^{10} - \frac{1}{3}x^4 + x^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = -x^3 + x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = -2x^6 + 3x^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = -3x^4 + 2x^3 - 3x + 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equation and Graph</td>
<td>Degree</td>
<td>Even or Odd</td>
<td>Leading Coefficient</td>
<td>End Behaviors</td>
<td>Number of Turning Points</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>(f(x) = x^3 - 3x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(x) = 2x^7 - 3x^3 + 2x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary

End Behaviors

An odd degree polynomial function has opposite end behaviors

If the leading coefficient is positive, then \(as \ x \rightarrow \pm \infty, \ y \rightarrow \pm \infty \)

If the leading coefficient is negative, then \(as \ x \rightarrow \pm \infty, \ y \rightarrow \mp \infty \)

An even degree polynomial has the same end behaviors

If the leading coefficient is positive, then \(as \ x \rightarrow \pm \infty, \ y \rightarrow \infty \)

If the leading coefficient is negative, then \(as \ x \rightarrow \pm \infty, \ y \rightarrow -\infty \)

Turning Points

A polynomial function of degree \(n \) has at most \(n - 1 \) turning points

Number of Zeros

A polynomial function of degree \(n \) may have up to \(n \) distinct zeros.

A polynomial function of odd degree must have at least one zero.

A polynomial function of even degree may have no zeros.